Научный интерес
Группа профессора Сингха работает над фундаментальным механизмом эпигенетики. Его цель состоит в том, чтобы проанализировать процесс перепрограммирования, а его недавняя работа показала, что перепрограммирование «возраста», где возраст старой клетки «переустанавливается», отделимо от перепрограммирования «развития», когда специализированные функции клетки «стираются начисто» и возвращаются в зародышевое, плюрипотентное состояние. Его группа работает над разработкой технологий омоложения клеток без необходимости прохождения эмбриональной стадии, что является обязательным при использовании современных методов омоложения функции клеток.
Профессор Прим Сингх получил докторскую степень в Кембриджском университете в 1987 году. Его докторская диссертация касалась обонятельного распознавания генетической индивидуальности, где он показал, что главный комплекс гистосовместимости (ГКГ) является причиной запахов, которые обеспечивают пожизненную отметку идентичности. Это влечет далеко идущие последствия для половых предпочтений и распознавания родства.
Он оставался в Кембридже в течение двух десятилетий, где он продемонстрировал, что мотив белка хромодомена (CD), разделяемый двумя белками Drosophila, сохраняется у животных и растений. Белки CD в настоящее время признаны ключевыми эпигенетическими регуляторами активности генов у эукариот, начиная c делящихся дрожжей и заканчивая человеком. Работа профессора Сингха многое сделала для выяснения роли хромодоменных белков HP1 млекопитающих в организации генома и экспрессии генов.
Затем он переехал в Эдинбург для изучения ядерного перепрограммирования, которое представляет собой процесс, посредством которого специализированная клетка вновь приобретает потенциал развития и старения. Эта работа была сделана вслед за открытием клонирования млекопитающих — «Овечки Долли». Он продолжил эту работу по перепрограммированию в рамках более широкой программы эпигенетики в Германии — сначала в Гамбургском Институте Лейбница, а затем в Медицинской школе «Шарите» в Берлине.
-
- Prim B. Singh, Petr P. Laktionov and Andrew G. Newman. Deconstructing age reprogramming. Biosciences. In press. [I.F. 1.94].
- Prim B. Singh, Victor V. Shloma and Stepan N. Belyakin. Maternal regulation of chromosomal imprinting in animals. Chromosoma. doi: 10.1007/s00412-018-00690-5. 2019 [I.F. 4.021].
- Prim B. Singh and Andrew G. Age reprogramming and epigenetic rejuvenation. Epigenetics and Chromatin. 11(1):73, 2018. [I.F. 5.51].
- Prim B. Singh and Stepan N. Belyakin. L chromosome behaviour and chromosomal imprinting in Sciara coprophila. Gene 9(9), [I.F. 3.2].
- Kyohei Oyama, Danny El‑Nachef, Chen Fang, Hidemi Kajimoto, Jeremy P. Brown, Prim B. Singh and Robb W. MacLellan. Deletion of HP1g in cardiac myocytes affects H4K20me3 levels but does not impact cardiac growth. Epigenetics and Chromatin 11(1):18, 2018. [I.F. 5.51].
- Laia Bosch-Presegué, Helena Raurell-Vila, Joshua K. Thackra, Carmen Casal, Jèssica González, Noriko Kane-Goldsmith, Miguel Vizoso, Jeremy P. Brown, Antonio Gómez, Juan Ausió, Timo Zimmermann, Manel Esteller, Gunnar Schotta, Prim B. Singh, Lourdes Serrano and Alejandro Vaquero. A distinctive contribution of HP1 isoforms to pericentric heterochromatin structure and organization. Cell Rep. 21(8):2048-2057, 2017 [I.F. 8.3].
- Newman, Andrew, Bessa, Paraskevi, Tarabykin, Victor and Singh, Prim, B. Activity DEPendent Transposition (ADEPT). EMBO Reports 18(3):346-348, 2017. [I.F. 7.2].
- Helena Raurell-Vila, Laia Bosch-Presegue, Jessica Gonzalez-Nieto, Noriko Kane-Goldsmith, Carmen Casal, Jeremy P. Brown, Anna Marazuela-Duque, Prim B. Singh, Lourdes Serrano and Alejandro An HP1 isoform-specific feedback mechanism regulates Suv39h1 activity under stress conditions. Chromatin and Epigenetics (2):166-175, 2017. [I.F. 5.51].
- Newman Andrew, Bessa Paraskevi, Tarabykin, Victor and Singh, Prim, B. Activity DEPendent Transposition (ADEPT) and the Aging Brain. Opera Med. Physiol. 2(3):188-204, 2016 [I.F. 0.8]. We have the cover illustration.
- Singh P.B. Heterochromatin and molecular mechanisms of parent-of-origin effects in animals. Bioscences 41(4):759-786, 2016 [I.F. 1.94].
- Alessio Cardinale, Ilaria Filesi, Prim B. Singh and Silvia Biocca. Intrabody-mediated sequestering of HP1b into insoluble aggregates induces co-aggregation of H3-H4 histones and LBR in the cytoplasm. Cell Res., 338:70-81, 2015. [I.F. 3.25].
- Anna Mattout, Yair Aaronson, Sailaja BS, Edupuganti V Raghu Ram, Arigela Harikumar, Jan-Philipp Mallm, Kae Hwan Sim, Emmanuelle Supper, Prim B. Singh, Sze Siu Kwan, Karsten Rippe and Eran Meshorer. HP1b has distinct subnuclear localizations, chromatin binding features and functions in embryonic stem cells and differentiating cell. Genome Biology. 16:213, 2015. [I.F. 10.8].
- Y Ebru Aydin, Dick-Paul Kloos, Emmanuel Gay, Willem Jonker, Lijuan Hu, Jörn Bullwinkel, Jeremy P. Brown, Maria Manukyan, Martin Giera, Prim B. Singh# and Reinald Fundele#. A hypomorphic Cbx3 allele causes prenatal growth restriction and perinatal energy homeostasis defects. Biosciences. 40(2):325-338, 2015. #corresponding authors. [I.F. 1.94]. We have the cover illustration.
- Maria Manukyan# and Prim B. Singh#. HP1β mobility as a measure of pluripotent and senescent chromatin “ground states” in human cells. Nature Scientific Reports 4:4789, 2014. #corresponding authors. [I.F. 5.08].
- Irina A. Maksakova, Preeti Goyal, Peter J. Thompson, Steven Jones, Prim B. Singh, Mohammad M. Karimi and Matthew C. Lorincz. KAP1/TRIM28-interacting proteins play direct and indirect roles in silencing of the 2-cell specific retrotransposon MERV-L. Chromatin and Epigenetics 4;6(1):15, 2013. [I.F. 5.51].
- Maria Manukyan and Prim B. Singh. Epigenetic rejuvenation. Invited review. Genes to Cells, 17(5):337-43, 2012. [I.F. 2.86].
- Bullwinkel, J. Lüdemann, A., Debarry, J. and Singh, P.B. Epigenotype switching of the CD14 and CD209 genes during differentiation of monocytes to dendritic cells. Epigenetics, 11:6(1), 2011. [I.F. 4.58].
- Maksakova IA, Goyal P, Bullwinkel J, Brown JP, Bilenky M, Mager DL, Singh PB and Lorincz MC. H3K9me3-binding proteins are dispensable for SETDB1/H3K9me3-dependent retroviralsilencing. Chromatin and Epigenetics, 20;4(1):12, 2011. [I.F. 4.46].
- Kerstin Mosch, Henriette Franz, Soeroes S., Prim B. Singh, Wolfgang Fischle. HP1 recruits activity-dependent neuroprotective protein to H3K9me3 marked pericentromeric heterochromatin for silencing of satellite repeats. Plos One, 6(1):e15894, 2011. [I.F. 3.70].
- Singh, P.B. and Zacouto, F. Nuclear Reprogramming and Epigenetic Rejuvenation. Biosciences 35(2):315-319, 2010. [I.F. 1.94].
- Singh, P.B. What is the essential interaction of HP1? Genetica 46(10):1-6, 2010. [I.F. 1.76].
- Jeremy P. Brown, Jörn Bullwinkel, Bettina Baron-Lühr, Mustafa Billur, Philipp Schneider, Heinz Winking and Prim B. Singh. HP1g function is required for male germ cell survival and spermatogenesis. Chromatin and Epigenetics, 3:9, 2010. [I.F. 5.51].
- Billur, M. Bartunik, H. and Singh P.B. The essential function of HP1b – a case of the tail wagging the dog? Trends in Biochemical Sciences, 35(2):115-23, 2010. [I.F. 13.52].
- Mirghomizadeh, F., Bullwinkel, J., Orinska, Z., Janssen, O., Petersen, A., Singh, P.B.* and Bulfone-Paus*, S. Mechanisms of IL-15-dependent regulation of mouse mast cell protease-2. Biol. Chem. 20;284(47):32635-41, 2009. *contributed equally. [I.F. 5.3].
- Bongiorni S., Pugnali, M., Volpi, S., Bizzaro, D., Singh P.B. and Prantera G. Epigenetic Marks for Chromosome Imprinting In Coccids. Chromosoma 118(4):501-12, 2009. [I.F. 3.26].
- Aucott, R. Y.Yang, J. Bullwinkel, Billur, M., W. Shi, J. P. Brown, U. Menzel, D. Kioussis, G. Wang, I. Reisert, R. K. Pandita, R. Fundele and B. Singh. HP1b is required for development of the cerebral neocortex and neuromuscular junctions. J. Cell Biol. 183: 597-606, 2008. [I.F. 10.82].
- Ian G Cowell, Nicola J. Sunter, Prim B Singh, Caroline A Austin and Michael J Tilby. DNA double-strand breaks induce gH2AX foci formation preferentially in euchromatin Plos Biology, 2007 Oct 24;2(10):e1057. [I.F. 12.69].
- Bongiorni S., Pasqualini B., Taranta M., Singh P.B. and Prantera G. Epigenetic regulation of facultative heterochromatinisation via the Me(3)K9H3/HP1/Me(3)K20H4 pathway. Cell Sci. 120(Pt 6):1072-80, 2007. [I.F. 6].
- Dialynas, D., Terung, S., J. P. Brown, R. Aucott, B. Baron-Lühr, B. Singh and S. D. Georgatos. Plasticity of HP1 proteins in mammalian cells. J. Cell Sci., 120(Pt 19):3415-24, 2007. [I.F. 6].
- Takada, Y., Kyo-ichi I., Shinga, J., Turner, J.A.M., Kitamura, H., Ohara, O., Watanabe, G., Singh, P.B., Kamijo, T., Jenuwein, T., Burgoyne, P.S. and Koseki. H. Mammalian Polycomb Scmh1 mediates exclusion of Polycomb complexes from the XY body in the pachytene spermatocytes. Development 134: 579-590, 2007. [I.F. 6.2].
- Katja Brandt, Prim B. Singh, Silvia Bulfone-Paus and René Rückert. Interleukin-21: Effects on lymphoid and myeloid cells and its relevance for immunity, infection and cancer. Cytokine and Growth Factor Reviews, 18(3-4):223-32, 2007. [I.F. 2.5].
- Wu, R., Singh, P.B. and Gilbert, D.M. The HP1- Me3K9H3 Interaction and Late-Replication of Mouse Peri-centric Heterocromatin Cell Biol. 174(2):185-94, 2006. [I.F. 10.82].
- Dialynas, D., N. Kourmouli, D. Makatsori, P. A. Theodoropoulos, P.B. Singh and S. D. Georgatos. HP1 associates with sub-nucleosomal particles in a me3K9-independent manner and is recruited to peripheral heterochromatin during the S-phase Biol. Chem. 281(20):14350-60, 2006. [I.F. 5.3].
- Kourmouli, N., Sun, Y-M., Prim B. Singh# and Brown, J.P. Epigenetic regulation of mammalian pericentric heterochromatin in vivo by HP1. BBRC, 337:901-7, 2005. #corresponding author. [I.F. 2.47].
- Wu, R., Terry, A., Singh, P.B. and Gilbert, D.M. Subnuclear localisation and replication timing of methyl K9 epitopes. Biol. Cell 16:2872-81, 2005. [I.F. 5.04].
- Badugu, R., Yoo, Y., Singh, P.B. and Kellum, R. HP1 mutants mimicking hypo- and hyperphosphorylated isoforms display distinct activities in heterochromatin assembly. Chromosoma, 113(7):370-84, 2005. [I.F. 3.26].
- Ponsaerts, P., van der Sar, S., Van Tendeloo, V., Jorens, P., Berneman, Z.W. and Singh, P.B. Highly efficient genetic loading and improved cell viability of human embryonic stem cells after mRNA electroporation. Cloning and Stem Cells, 6:211-216, 2004. [I.F. 2.35].
- Ponsaerts, P., Brown, J.P., Van den Plas, D., Van den Eeden, L., Van Bockstaele, D.R., Jorens, P., Van Tendeloo, V.F.I, Merregaert, J., Singh, P.B., Berneman, Z.W. RNA-based gene transfer in mouse embryonic stem cells: efficient FLPe- and Cre-mediated recombination in embryonic stem cell cultures. Gene Therapy, 11:1606-10, 2004. [I.F. 4.21].
- Polioudaki, H., Markaki, Y., Kourmouli, N., Dialynas, Singh, P.B. and Georgatos, S.D. Mitotic Phosphorylation of Histone H3 at Threonine 3. FEBS Lett. 560:39-44, 2004. [I.F. 3.47].
- Makatsori, D., Kourmouli, N., Polioudaki, H., Shultz, L.D. McClean, K., Theodoropoulos, P.A., Singh, P.B. and Georgatos, S.D. The inner nuclear membrane protein lamin B receptor forms distinct microdomains and links epigenetically marked chromatin to the nuclear envelope. Biol. Chem. 279:25567-25573, 2004. [I.F. 5.3].
- Pandy, R.R., Ceribelli, M., Singh, P.B., Ericsson, J., Mantovani, R. and Kanduri, C. NF-Y Regulates the Antisense promoter, Bidirectional Silencing, and Differential epigenetic marks of the kcnq1 Imprinting Control Region. Biol. Chem. 279: 52693-793, 2004. [I.F. 5.3].
- Xin, H., Yoon, H-G., Singh, P.B., Wong, J., Qin, J. Components of a pathway maintaining histone modification and HP1 binding at the pericentric heterochromatin in mammalian cells. Biol. Chem. 279: 9539-46, 2004. [I.F. 5.3].
- Jackson, J.P., Johnson, L., Jasencakova, Z., Zhang, X., Singh, P.B., Chen, X., Schubert, I., Jenuwein, T. and Jacobsen, S.E. Dimethylation of histone H3 lysine 9 is a critical mark for DNA methylation in Arabidopsis thaliana. 112:308-315, 2004. (Scholar Citations 186). [I.F. 3.26].
- Grigoryev, S.A., Nikitina, T., Pehrson, JR., Singh, PB. and Woodcock, C.L. Dynamic relocation of epigenetic markers illuminates an active role of constitutive heterochromatin in the transition from proliferation to quiescence. Cell Sci 117:6153-66, 2004. [I.F. 6.0].
- Kourmouli, N. P. Jeppesen, S. Mahadevhiah, P. Burgoyne, R. Wu, D. M. Gilbert, S. Bongiorni, G. Prantera, L. Fanti, S. Pimpinelli, W. Shi, R. Fundele and B. Singh. Heterochromatin and trimethylated lysine 20 of histone H4 in animals. J Cell Sci. 117:2491-501, 2004. (Scholar Citations 160). [I.F. 6.0].
- Cheutin,T., Gorski, S.A., May, K., Singh, P.B. and Misteli, T. In vivo dynamics of swi6 in yeast: Evidence for a stochastic model of heterochromatin. Cell Biol. 24:3157-67, 2004. [I.F. 5.04].
- Istomina, N.E., Shushanov, S.S., Springhetti, E.M., Karpov, V.L., Krasheninnikov, I.V., Stevens, K., Zaret, K.S., Singh P.B. and Grigoryev, S.A. Insulation of the Chicken ß-globin Chromosomal Domain from a Chromatin-Condensing Protein, MENT. Cell. Biol. 23:6455-6468, 2003. [I.F. 5.04].
- Tamaru, H., Zhang, X., McMillen, D., Singh, P.B., Nakayama, Jun-ichi, Grewal, S., Allis, C. D., Cheng, X. and Selker, E.U. Trimethylation of Histone H3 Lysine-9 is a mark for Methylated DNA in Nature Genetics. 34:75-9, 2003. (Scholar Citations 274). [I.F. 29.6].
- Cheutin,T., McNairn, A. J., Jenuwein T., Gilbert, D.M., Singh, P.B. and Misteli, T. Maintenance of stable heterochromatin domains by dynamic HP1 binding. Science. 299:721-725, 2003. (Scholar citations 397). [I.F. 31.5].
- Brown, J.P., Singh, P.B.# and Cowell, I.G. Composite cis-acting epigenetic switches in Eukaryotes: Lessons from Drosophila Fab-7 for the Igf2-H19 imprinted domain. Genetica, 117:199-207, 2003. #corresponding author. [I.F. 1.76].
- B. Singh and S. D. Georgatos. HP1: Facts, open questions and speculation. J. Structural Biol. 140:10-16, 2002. [I.F. 3.4].
- Cowell, I. G., R. Aucott, S. Mahadevaiah, P. Burgoyne, N. Huskisson, S. Bongiorni, G. Prantera, L. Fanti, S. Pimpinelli, R. Wu, D. M. Gilbert, W. Shi, R. Fundele, H. Morrison, P. Jeppesen and B. Singh. Heterochromatin, HP1 and methylation at lysine 9 of histone H3 in animals. Chromosoma, 111(1):22-36, 2002. (ISI Citations 229). [I.F. 3.26].
- Filesi, I., A. Cardinale, S. vanderSar, I.G. Cowell, B. Singh# and S. Biocca# (#joint corresponding authors) Loss of HP1 chromodomain function in mammalian cells by intracellular antibodies causes cell death. J. Cell Sci. 115:1803-1813. 2002. [I.F. 6.0].
- Scholzen T., Endl E., Wohlenberg C., Van der Saar S., Cowell IG. and Gerdes J. and Singh P.B. The Ki-67 protein directly interacts with members of HP1 family: A potential role in the regulation of higher-order chromatin structure. Pathology. 195:1-11. 2002. [I.F. 7.33].
- Kathirvel, P. and Singh, P.B. Maternal Regulation of Imprinting. Biosci. 5, 439-442, 2002. [I.F. 1.93].
- Guo Yu, P. B. Singh and Zihe Rao. Crystallization and preliminary crystallographic studies on the chromo shadow domain (CSD) of mouse heterochromatin protein M31. Acta Crystallogr. D. Biol. Crystallogr. 27, 437-8, 2002. [I.F. 2.1].
- Turner JM, Burgoyne PS and Singh P.B. M31 and macroH2A1.2 colocalise at the pseudoautosomal region during mouse meiosis. Cell Sci. 114:3367-3375. 2001. [I.F. 6.0].
- Singh, P.B. Chemosensation and Genetic Individuality. 121:529-539, 2001. [I.F. 3.3].
- Jones, D. O., Mattei, M-G., Horsley D., Cowell, I. G. and Singh P.B. The gene and pseudogenes of HP1g. DNA sequence. 12, 147-160, 2001. [I.F. 4.95].
- Polioudaki, H., Kourmouli, N., Drousou, V., Theodoropoulos P. A., Singh, P.B., Giannakouros, T. and Georgatos, S. D. Acetylation-dependent associations of histones H3/H4 with HP1. EMBO Reports 2:920-925, 2001. (Scholar Citation 103). [I.F. 7.4].
- Kourmouli, N., Theodoropoulos P. A., Dialynas G., Bakou, A., Politou, A., Cowell, I.G., Singh, P.B. and Georgatos, S. D. Dynamic associations of heterochromatin protein 1 with the nuclear envelope. EMBO J 19:6558-6568, 2000. (ISI Citation 89). [I.F. 10.78].
- Banerjee S., Singh, P. B., Rasberry, C. and Cattanach, BM. Embryonic inheritance of the chromatin organisation of the imprinted H19 domain in mouse spermatozoa. Mechanisms of Development, 90, 217-226, 2000. [I.F. 2.42].
- Hoyer-Fender, S., Singh, P. B. and Motzkus, D. The murine heterochromatin protein M31 is associated with the centromere in round spermatids and is a component of mature spermatozoa. Experimental Cell Res., 254:72-79, 2000. [I.F. 3.6].
- Jones, D.O., I.G. Cowell and Singh, P.B. Mammalian chromodomain proteins: their role in genome organisation and expression. Bioessays. 22(2):124-137, 2000. (Scholar citations 230). [I.F. 4.83].
- Wang, G., Ma, A., Cheok-man, C., Horsley, D., Brown, N.R., Cowell, I.G. and Singh, P.B. Conservation of Heterochromatin Protein 1 (HP1) function. Cell. Biol. 20:6970-6983, 2000. (Scholar citations 102). [I.F. 5.03].
- Festenstein, R., Sharhi-Namini, S., Fox, M., Roderick, K., Tolani, M., Norton, T., Saveliev, A., Kioussis, D. and Singh, P.B. Heterochromatin protein 1 modifies mammalian PEV in a dose- and chromosomal-context dependent manner. Nature Genetics. 23:457-461, 1999. [I.F. 29.6].
- Agaard, L., Laible, G., Selenko, P., Schmid, M., Dorn, R., Schotta, G., Kuhfittig, S., Wolf, A., Lebersorger, A., Singh, P.B., Reuter, G. and Jenuwein, T. Mammalian homologues of the Drosophila PEV-modifier Su(var)3-9 encode centromere-associated proteins that interact with the heterochromatin component M31. EMBO J. 18:1923-38, 1999. [I.F. 10.78].
- Ryan, R.F., Schultz, D.C., Ayyanathan, K., Singh, P.B., Friedman, J.R. Fredericks, W.J. and Rauscher, F.J. III. The KAP-1 corepressor protein interacts and co-localises with heterochromatic and euchromatic HP1 proteins: A potential role for KRAB-ZFPs in heterochromain-mediated gene silencing. Cell Biol. 19:4366-4378, 1999. [I.F. 5.08].
- Motzkus, D., Singh, P. B. and S. Hoyer-Fender. M31, a murine homologue of Drosophila HP1, is concentrated in the XY-body during spermatogenesis. Cytogen. Cell Gen., 86: 83-88, 1999. [I.F. 2.4].
- Singh, P. B. The present status of the “carrier hypothesis” of chemosensory recognition of genetic individuality. Genetica 104:231-33, 1999. [I.F. 1.76].
- Pearse-Pratt, R., Schellinck, H., Brown, R.E., Singh, P.B. and Roser B. Soluble MHC antigens and olfactory recognition of genetic individuality: the mechanism. Genetica 104:223-30, 1999. [I.F. 1.76].
- Peterson, K., Wang, G., Horsley, D. Richardson, J. C., Sapienza, C. Latham, K. E. and Singh, P. B. Subcellular localisation of alternative protein products encoded by the M31 gene, a murine homologue of heterochromatin protein 1. of Exp. Zool. 280:288-303, 1998. [I.F. 1.39].
- Doe, C., Wang, G., Cheok-man Chow, Fricker, M. D., Singh, P.B. and Mellor E. J. The fission yeast chromodomain encoding gene chp1+ is required for chromosome segregation and shows a genetic interaction with alpha-tubulin. NAR. 26(18), 4222-9, 1998. [I.F. 8.4].
- Singh, P.B. and Huskisson, N.S. Chromatin complexes as aperiodic microcrystalline arrays that regulate genome organisation and expression. Gen. 22:85-99, 1998. [I.F. 2.1].
- Singh P.B. and Brown, D. Activity of the Ultrabithorax Parasegment-specific Regulatory Domains around Their Anterior Boundaries. Theoretical Biology, 186:397-413, 1997. [I.F. 2.4].
- Ball, L.J., Murzina, N., Broadhurst, W. R., Raine, A.R.C., Archer, S.J., Stott, F.J., Murzin, A.G., Singh, P.B., Domaille, P.J. and Laue, E.D. Structure of the Chromatin-Binding Domain from Mouse Modifier Protein 1. The EMBO J. 16:2473-2481, 1997. (Scholar citations 163). [I.F. 10.78].
- Wang, G., Horsley, D., Ma, A., Butcher, G. W. and Singh, P.B. M33, a mammalian homologue of Drosophila Pc is enriched within centromeric heterochromatin of metaphase chromosomes but localises to euchromatin in interphase nuclei. and Cell Gen. 78:50-55, 1997. [I.F. 2.4].
- Horsley, D., Hutchings, A., Butcher, G.W. and Singh, P.B. M32, a murine homologue of Drosophila HP1, localises to euchromatin within interphase nuclei and is largely excluded from constitutive heterochromatin. and Cell Gen. 73:308-311, 1996. (Scholar citations 73). [I.F. 2.4].
- Feil, R., Baldacci, A., Tartellien, E., Reik, W. and Singh, P. B. Cbx-1, a mouse homologue of the Drosophila HP1 gene, maps to distal chromosome 11 and is not alleic to Om. Mammalian Gen. 6:469-471, 1995. [I.F. 2.9].
- Singh, P. B. and James, T.C. Chromobox genes and the molecular mechanisms of cellular determination. Nobel Symposium, Stockholm, 1995. In Parental Imprinting: Causes and Consequences. Ed. R. Ohlsson. Cambridge University Press. pp. 71-108, 1995.
- Singh, P.B. The molecular mechanisms of cellular determination: their relation to chromatin structure and parental imprinting. J. Cell Sci. 107:2653-2668, 1994. [I.F. 6.0].
- Wreggett, K.A., Hill, F., James, P.S., Hutchings, A., Butcher, G.W. and Singh, P.B. A mammalian homologue of Drosophila heterochromatin protein 1 (HP1) is a component of constitutive heterochromatin. and Cell Gen. 66:99-103, 1994. [I.F. 2.4].
- Chevillard, C., Reik, W., McDermott, M., Mattei, M.G., Fontes, M. and Singh, P.B. Chromosomal localisation of human autosomal homologues of the Drosophila heterochromatin protein 1 gene (HP1). Mammalian Genome. 4:124-126, 1993. [I.F. 2.9].
- Pearce, J.J.H., Singh, P.B. and Gaunt, S.J. The mouse has a Polycomb-like chromobox gene. Development 114:921-929, 1992. [I.F. 6.2].
- Reik, W., Waterfield, N.R. and Singh, P.B. Mapping of two human homologues of a Drosophila heterochromatin protein gene to the X-chromosome. Genome. 3:650-652, 1992. [I.F. 2.9].
- Epstein, H., James, T.C. and Singh, P.B. Cloning and expression of Drosophila HP1 homologues from a mealybug, citri. J. Cell Sci., 101:463-474, 1992. [I.F. 6.0].
- Hamvas, R.M.J., Reik, W., Gaunt, S.J., Brown, S.W. and Singh, P.B. Mapping of a mouse homologue of a HP1 gene to the X chromosome. Mammalian Genome, 2:72-75, 1992. [I.F. 2.9].
- Singh, P.B. et al., A sequence motif found in a Drosophila heterochromatin protein is conserved in animals and plants. Nucleic Acids Research. 19:789-793, 1991. [I.F. 8.4].
- Roser, B., Brown, R.E. and Singh, P.B. Excretion of transplantation antigens as signals of genetic individuality. Chemical Senses, 3:187-209, 1991. [I.F. 3.95].
- Surani, M.A., Kothary, R.K., Allen, N.D., Singh, P.B., Fundele, R., Ferguson-Smith, A.C. and Barton, S.C. Genome Imprinting and Development in the mouse. Development, supplement, 89-98, 1990. (Scholar citations 153). [I.F. 6.2].
- Singh, P.B., Herbert, J., Roser, B., Tucker, D.K. and Brown, R.E. Rearing rats in a germ-free environment eliminates their odours of individuality. J .Chem. Ecol., 16:1667-1681, 1990. [I.F. 2.23].
- Gaunt, S.J. and Singh, P.B. Homeogene expression patterns and chromosomal imprinting. Trends in Genetics. 6:208-212, 1990. [I.F. 10.2].
- Brown, R.E., Roser, B. and Singh, P.B. The MHC and individual odours in rats. In Chemical signals in Vertebrates V. Eds. MacDonald, D.W., Muller-Schwarze, D. and Natynczuk, S.E. Oxford University Press. pp. 228-243, 1990.
- Singh, P.B., Roser, B. and Brown, R.E. Soluble classical Class I MHC antigens in solution in the body fluids. In MHC+X: complex formation. Springer-Verlag, NY. pp. 226-239, 1989.
- Kampinga, J., Kroese, F.G.M., Pol, G.H., Nieuwenhuis, P., Haag, F., Singh, P.B., Roser, B. and Aspinall, R. A monoclonal antibody to a determinant of the rat T cell antigen receptor expressed by a minor subset of T cells. International Immunology, 1:289-295, 1989. [I.F. 3.25].
- Brown, R.E., Roser, B. and Singh, P.B. Class I and Class II regions of MHC both contribute to individual odours in congenic inbred strains of rat. Gen., 19:659-673, 1989. [I.F. 2.9].
- Singh, P.B. and Aspinall, R. A review of Jan Klein’s «The Natural History of the Major Histocompatibility Complex«. Immunogenetics, 45:265-266, 1988. [I.F. 2.5].
- Singh, P.B. et al., Class I transplantation antigens in solution in the body fluids and in the Urine: Individuality signals to the environment. Exp. Med. 168:195-211, 1988. [I.F. 13.2].
- Brown, R.E., Singh, P.B. and Roser, B. Olfactory recognition of congenic strains of rats. N. Y. Acad. Sci., 503:203-204, 1988. [I.F. 4.4].
- Brown, R.E., Singh, P.B. and Roser, B. Both Class I and Class II regions of the major histocompatibility complex influence the distinctive urinary odours of congeinc rat strains. American Zoologist, 27:47-48, 1987. [I.F. 2.96].
- Brown, R.E., Singh, P.B. and Roser, B. The MHC and the chemosensory recognition of genetic individuality. Physiology and Behaviour, 40:65-73, 1987. (Scholar citations 135). [I.F. 3.03].
- Roser, B., Stephenson, P., and Singh, P.B. Suppressor cells and soluble transplantation antigens in tolerance. In Progress in Immunology VI, pp. 1022-34. Academic Press. 1987. Singh, P.B., Brown, R.E. and Roser, B. MHC antigens in the urine as olfactory recognition cues. Nature. 327:161-164, 1987. [I.F. 42.4].